Environmental DNA: a new way to survey biodiversity in aquatic ecosystems

Dr. Liz Alter (sealter@gmail.com, ealter@csumb.edu) California State University, Monterey Bay City University of New York (Adjunct, Graduate Center)

Agenda

- 1. Learning objectives and introductions to each other
- 2. Introduction to eDNA: what is it? What are the strengths and weaknesses of this method?
- 3. Overview of the process: Sample collection, lab work and data analysis
- 4. Ways you can incorporate eDNA in the classroom [Break]
- 5. Activity: data analysis
- 6. Wrap-up

Learning objectives

Understand the basic principles behind eDNA analysis and how it can be used to measure biodiversity

Explain the difference between the two major types of eDNA analysis

Describe the basic components of eDNA analysis from sampling to data analysis

Use a reference database to identify an unknown species

Introductions to each other!

- Liz Alter <u>sealter@gmail.com</u>; <u>ealter@csumb.edu</u>
- Twitter: montereyfishlab
- Your name, where you have taught or currently teach, a little about why you were interested in this workshop

 Introduction to eDNA: what is it? What are the strengths and weaknesses of this method?

Organisms leave DNA behind

- Sloughed cells from skin and gut
- Injuries
- Decomposing tissue
- Digested tissue
- Gametes

Environmental DNA methods analyze this "left behind" DNA to learn about organisms that live in a particular habitat!

Why do we need eDNA methods? Aquatic biodiversity is surprisingly poorly known

- Important to understand the spatio-temporal distribution of biodiversity for restoration and conservation planning
- But....relatively little scientific attention has been paid to these ecosystems
- Changes can occur rapidly from one year to the next

Challenges in surveying aquatic species diversity

- Traditional survey methods are time and labor-intensive and therefore costly
- Can cause mortality, stress in both target and non-target species
- May miss cryptic taxa (rock-dwelling, etc)
- Difficulty in water access and safety concerns
- Many taxa are rare, small, cryptic ightarrow difficult to sample
- Different life stages can make identification challenging
- Fewer and fewer taxonomists

eDNA: 2 major methods

Quantitative PCR (qPCR)

- Technique based on quantification of a fluorescent probe that sticks to the sequence of interest
- We measure increase in the amount of PCR product over time.
- The increase correlates inversely to the initial amount of DNA template

qPCR quantifies eels in the Bronx River

Abundance

eDNA concentration

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

North American Journal of Fisheries Management © 2021 American Fisheries Society ISSN: 0275-5947 print / 1548-8675 online DOI: 10.1002/nafm.10625

MANAGEMENT BRIEF

Relating American Eel Abundance to Environmental DNA Concentration in the Bronx River

Metabarcoding

Traditional DNA barcoding

DNA barcoding: identifying species using short, standardized gene region(s)

New technique: metabarcoding for species identification (still relies on reference database)

Images: Clarke-Hopcroft, Hopcroft, Bluhm, Iken

Tube anemone

Pelagic snail

Ambereye shrimp

Arctic Sea star

Cost per Raw Megabase of DNA Sequence

Strengths of the eDNA approach

- Ease of sampling: no special expertise necessary, facilitates sampling across seasons, many habitats
- Can improve results after the fact, without resampling – long-term snapshot of diversity
- ID cryptic, invasive species & different life stages; migration and spawning behaviors
- Possible to ID species from many taxonomic groups simultaneously (species assemblages)

eDNA compared to other methods of surveys (Thompsen et al. 2012 PloS ONE)

Weaknesses of the eDNA approach

- Contamination can be an issue and vigilance is required
- Many variables affect shedding rates and preservation of eDNA (pH, temperature, food availability, season, turbidity, UV)
- No single agreed-upon pipeline (yet)
- While sample collection is easy, sample processing and data collection requires specialized equipment and expertise
- Inferring abundance is tricky and may not be possible for many taxa/systems
- Accurate IDs depend on accurate reference database

How long does eDNA persist in water?

- Can be on the order of hours-weeks
- In stagnant water versus flowing
- Temperaturedependent
- Life span in sediment >>> life span in water

Dejean et al. 2012

Degradation rates may be species- and environment-specific

Thomsen et al. 2012 PLOS ONE

time (days)

2. Overview of the process: Sample collection, lab work and data analysis

Field and lab workflow

- 1. Filter water sample, extract DNA from filter
- 2. Amplify (a segment of mitochondrial) DNA
 -60 base pair region 12S gene (ribosomal RNA)
 -primers designed for a particular taxonomic group
 -PCR replicates (3-10)
- 3. Combine PCR reps and sequence on Illumina or other platform
- 4. Filter and match sequence reads to NCBI database

Sampling in the field

- When? Consider seasonality, dynamics over short-term (rain events, tidal cycles)
- How many samples/what volume?
- Where?
 - Water: surface, at depth, benthos
 - Soil: surface, cores

Sample preservation

- Filter on-site (water samples) & preserve filters
- Ethanol
- Silica gel drying
- Storage in DNA extraction buffer
- Snap-freezing in liquid nitrogen (not practical in the field most of the time)
- Hustle back to lab for DNA extraction...

Extracting DNA from tissue

 Many different methods, from cheaper/faster (chelex) to more expensive/longer (Qiagen kits – PowerSoil, PowerWater)

Nearly all involve three steps: 1) an alkaline lysis step 2) selective adsorption or centrifugation in a high-salt buffer, and 3) finally elution of purified DNA in water or buffer.

DNA is stable frozen

but will degrade if rethawed many times!

Data analysis - overview

qiime2.org

Data analysis!

 After sequencing and data quality filtering, sequences will be matched against a reference database like NCBI to assign species identity

>*16S-0000002 | depth=42 | freq=2.31

TTCAACCTTGCGGTCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCTGCGGCACTAAACCCCGGAAAGGGTCTAACACCTAGCACTCATCGTT TACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAAGCCAGAGAGCCGCTTTCGCCACCG GTGTTCCTCCATATATCTACGCATTTCACCGCTACACATGGAATTCCACTCTCCCCTCTTGCACTCAAGTTAAACAGTTTCCAAAGCGTACTATG GTTAAGCCACAGCCTTTAACTTCAGACTTATCT

>*16S-0000019 | depth=12 | freq=0.66

Alignment to references

AY053482.1

Sequence ID: Icl|Query_210570 Length: 1429 Number of Matches: 1

Range 1: 565 to 882 Graphics									
Score 588 b	its(31	Expect B) 7e-172	Identities 318/318(100%)	Gaps 0/318(0%)	Strand Plus/Minus				
Query	1	TTCAACCTTGCGGTCGTAC	TCCCCAGGCGGAGTGCTTAAT	GCGTTAGCTGCGGCACT.	AAA 60				
Sbjct	882	TTCAACCTTGCGGTCGTAC	TCCCCAGGCGGAGTGCTTAAT	GCGTTAGCTGCGGCACT.	AAA 823				
Query	61	CCCCGGAAAGGGTCTAACA	CCTAGCACTCATCGTTTACGG	CGTGGACTACCAGGGTA	TCT 120				
Sbjct	822	CCCCGGAAAGGGTCTAACA	CCTAGCACTCATCGTTTACGG	CGTGGACTACCAGGGTA	тст 763				
Query	121	AATCCTGTTTGCTCCCCAC	GCTTTCGAGCCTCAGCGTCAG	TTACAAGCCAGAGAGCC	GCT 180				
Sbjct	762	AATCCTGTTTGCTCCCCAC	GCTTTCGAGCCTCAGCGTCAG	TTACAAGCCAGAGAGCC	GCT 703				
Query	181	TTCGCCACCGGTGTTCCTC	CATATATCTACGCATTTCACC	GCTACACATGGAATTCC.	ACT 240				
Sbjct	702	TTCGCCACCGGTGTTCCTC	CATATATCTACGCATTTCACC	GCTACACATGGAATTCC.	ACT 643				
Query	241	CTCCCCTCTTGCACTCAAG	TTAAACAGTTTCCAAAGCGTA	CTATGGTTAAGCCACAG	сст 300				
Sbjct	642	CTCCCCTCTTGCACTCAAG	TTAAACAGTTTCCAAAGCGTA	CTATGGTTAAGCCACAG	CCT 583				
Query	301	TTAACTTCAGACTTATCT	318						
Sbjct	582	TTAACTTCAGACTTATCT	565						

Sixthresearcher.

Alignment to references

CP001685.1

Sequence ID: Icl|Query_210571 Length: 1510 Number of Matches: 1

Range 1: 560 to 872 Graphics									
Score 490 bits(265)		Expect 2e-142	xpect Identities 2e-142 297/313(95%)		Gaps 0/313(0%)	Stra Plus	Strand Plus/Minus		
Query	1	TTCAGCC	TTGCGGCC	GTAC	TCCCCAGGCGGA	TTACTTATC	GCATTCGCTTCGG	CACAGAC	60
Sbjet	872	TTCAGCC	TTGCGGCC	GTAC	TCCCCAGGCGGA	TTACTTATC	GCATTAGCTTCGG	CACGGAC	813
Query	61	AGTETTE	CTGCCCAC	ACCC	AGTAATCATCG	ттасссссс	заастассаваат	ATCTAAT	120
Sbjet	812	ACTCTT	Aroun	d 9!	5-97% of ic	lentity is	required	ATCTAAT	753
Query	121	CCTGTT	in the	alig	nment of	an OTU s	sequence	TATCTTC	180
Sbjet	752	CCTGTT		to	a database	e referen	се	TATCTTC	693
Query	181	ATCATCG	GCATTCCT	GCAC	ATATCTACGAAT	TTCACCTCT	ACTCGTGCAGTTC	CGTCCAC	240
Sbjet	692	ATCATCGGCATTCCTGCACATATCTACGAATTTCACCTCTACTCGTGCAGTTCCGTCCAC 6						633	
Query	241	CTCTCCG	GTACTCCA	GCCI	ATCAGTTTCAAA	GGCAGGCCT	GCGGTTGAGCCGC	AGGTTTT	300
Sbjet	632	CTCTCCA	GCACTCTA	GCCA	AACAGTTTCCAG	GGCAGGCTT	GCGGTTGAGCCGC	AAGTTTT	573
Query	301	CACCCCT	GACTTG	313					
Sbjet	572	CACCCCA	GACTTG	560					

Sixthresearcher.

Final dataset

OTU representative sequences		OTU taxonomy assignments		Samples and OTU frequencies													
										Y		COUNT_OTUS	19	14	13	15	14
										SEQUENCES	MEAN_FR SAI	MPLES OTU	SRS052681	SRS042606	SRS042483	SRS048589	SRS051454
16S: TTCAACCTTGCGGTCG	0.0393	5 tax=k:Bacteria,p:Firmicutes,c:Bacilli,o:Lactobacillales,f:Streptococcaceae,g:Streptococcus,s:pseudopneumoniae;	0.0061	0.0893	0.0094	0.0089	0.083										
16S: TTCATACTTGCGTACG	0.0707	5 tax=k:Bacteria,p:Fusobacteria,c:Fusobacteria (class),o:Fusobacteriales,f:Fusobacteriaceae,g:Fusobacterium;	0.0683	0.0918	0.0031	0.0529	0.1374										
16S: TTCACCGTTGCCGGCG	0.0557	5 tax=k:Bacteria,p:Bacteroidetes,c:Bacteroidia,o:Bacteroidales,f:Porphyromonadaceae,g:clone,s:HF001;	0.0463	0.0494	0.0682	0.0575	0.057										
16S: TTTAGCCTTGCGGCCG	0.0815	2 tax=k:Bacteria,p:Actinobacteria,c:Actinobacteria (class),o:Actinomycetales,f:Corynebacteriaceae,g:Corynebacterium,s:matruchotii;	0.0628	3		0.1001											
16S: TTTAATCTTGCGACCG	0.0291	5 tax=k:Bacteria,p:Proteobacteria,c:Betaproteobacteria,o:Neisseriales,f:Neisseriaceae,g:Neisseria;	0.0061	0.0963	0.0055	0.0065	0.0311										
16S: TTCAACCTTGCGGTCG	0.0246	5 tax=k:Bacteria,p:Firmicutes,c:Clostridia,o:Clostridiales,f:Veillonellaceae,g:Veillonella;	0.0226	0.0374	0.0086	0.0168	0.0376										
16S: TTCACCGTTGCCGGCG	0.0124	4 tax=k:Bacteria,p:Bacteroidetes,c:Bacteroidia,o:Bacteroidales;	0.0127	0.0089	0.0071		0.0207										
16S: TTCAGCCTTGCGGCCG	0.0093	5 tax=k:Bacteria,p:Fusobacteria,c:Fusobacteria (class),o:Fusobacteriales,f:Fusobacteriaceae,g:Leptotrichia,s:buccalis;	0.0242	0.0038	0.0031	0.0098	0.0058										
16S: TTTAGCCTTGCGGCCG	0.0127	3 tax=k:Bacteria,p:Actinobacteria,c:Actinobacteria (class),o:Actinomycetales,f:Actinomycetaceae,g:Actinomyces,s:odontolyticus;	0.0039	0.031	0.0031												
16S: TTCACCGTTGCCGGCG	0.008	4 tax=k:Bacteria,p:Bacteroidetes,c:Bacteroidia,o:Bacteroidales,f:Prevotellaceae,g:Prevotella;	0.0072	0.0127	0.0055		0.0065										
16S: TTCAACCTTGCGGTCG	0.0141	2 tax=k:Bacteria,p:Firmicutes,c:Bacilli,o:Lactobacillales,f:Enterococcaceae,g:Enterococcus;		0.0177	7		0.0104										
16S: TTCATTCTTGCGAACG	0.0093	3 tax=k:Bacteria,p:Firmicutes,c:Clostridia,o:Clostridiales,f:Lachnospiraceae;		0.0139)	0.0042	0.0097										
16S: TTCATTCTTGCGAACG	0.0086	3 tax=k:Bacteria,p:Actinobacteria;	0.0121	L	0.0063	0.0075											
16S: TTTAGCCTTGCGGCCG	0.0115	2 tax=k:Bacteria,p:Actinobacteria,c:Actinobacteria (class),o:Actinomycetales,f:Actinomycetaceae,g:Actinomyces,s:oris;	0.0182	2		0.0047	1										
16S: TTCACACTTGCGTGCG	0.0114	2 tax=k:Bacteria,p:Bacteroidetes,c:Flavobacteria,o:Flavobacteriales,f:Flavobacteriaceae,g:Capnocytophaga,s:sputigena;			0.0047	1 E	0.0181										
16S: TTCATTCTTGCGAACG	0.0093	2 tax=k:Bacteria,p:Firmicutes,c:Clostridia,o:Clostridiales,f:Lachnospiraceae,g:Oribacterium,s:sp. oral taxon 078;		0.0095	5		0.0091										
16S: TTCACTCTTGCGAGCG	0.006	3 tax=k:Bacteria,p:Bacteroidetes,c:Flavobacteria,o:Flavobacteriales,f:Flavobacteriaceae;	0.0033	0.0063		0.0084											
16S: TTCACCGTTGCCGGCG	0.0051	3 tax=k:Bacteria,p:Bacteroidetes,c:Bacteroidia,o:Bacteroidales,f:Prevotellaceae,g:Prevotella,s:nigrescens;	0.0066	0.0057	0.0031												
16S: TTCAGCCTTGCGGCCG	0.007	2 tax=k:Bacteria,p:Firmicutes,c:Clostridia,o:Clostridiales,f:Veillonellaceae,g:Selenomonas,s:noxia;	0.0083	3		0.0056											
16S: TTCAGTGTTGCCACCG	0.0055	2 tax=k:Bacteria,p:Firmicutes,c:Clostridia,o:Clostridiales,f:Clostridiales Family XI. Incertae Sedis,s:Parvimonas micra;	0.0077	7			0.0032										
16S: TTCACCCTTGCGGGCA	0.0077	1 tax=k:Bacteria,p:Spirochaetes,c:Spirochaetes (class),o:Spirochaetales,f:Spirochaetaceae,g:Treponema,s:socranskii;	0.0077	7													
16S: TTTAATCTTGCGACCG	0.0075	1 tax=k:Bacteria,p:Proteobacteria,c:Betaproteobacteria,o:Burkholderiales,f:Burkholderiaceae;				0.0075											
16S: TTCAGTCTTGCGACCG	0.0061	1 tax=k:Bacteria,p:Firmicutes,c:Clostridia,o:Clostridiales,f:Veillonellaceae,g:Selenomonas;	0.0061	L													
16S: TTCAACCTTGCGGCCG	0.0061	1 tax=k:Bacteria,p:Proteobacteria,c:Betaproteobacteria,o:Burkholderiales,f:Comamonadaceae;				0.0061											
16S: TTCATTCTTGCGAACG	0.005	1 tax=k:Bacteria,p:Bacteroidetes,c:Bacteroidia,o:Bacteroidales,f:Porphyromonadaceae;	0.005	5													
16S: TTTAACCTTGCGGTCG	0.0039	1 tax=k:Bacteria,p:Firmicutes,c:Clostridia,o:Clostridiales;			0.0039												
16S: TTTATTCTTGCGAACG	0.0037	1 tax=k:Bacteria,p:Firmicutes,c:Clostridia,o:Clostridiales,f:Eubacteriaceae,g:Eubacterium;				0.0037	1										
16S: TTCATTCTTGCGAACG	0.0032	1 tax=k:Bacteria,p:Firmicutes,c:Clostridia,o:Clostridiales,f:Lachnospiraceae,g:Catonella;					0.0032										

What kinds of questions can you answer with taxonomic tables?

- What species are present at each site and how do they compare across sites?
- Does overall diversity vary across sites? (diversity indices)
- How many more species do you detect with each additional sample (rarefaction)?
- How does the composition of the community compare across sites?
- Are nonnative/pathogenic species present?

Downstream analysis

Taxonomy summaries:

http://hospitalmicrobiome.com/construction-samples/

Sixthresearcher.

org

Downstream analysis

Alpha diversity measurements and rarefaction plots:

Alpha Diversity Rarefaction Curves

Observed Species at n = 4882 reads

http://hospitalmicrobiome.com/construction-samples/

Sixthresearcher.

org

Downstream analysis

Principal Coordinate Analysis (PCoA):

http://hospitalmicrobiome.com/construction-samples/

Sixthresearcher.org

Some tools for analysis

- DNA Subway: DNAsubway.cyverse.org implements QIIME2
- Excel for basic stats/figures!
- R/R studio: VEGAN package for diversity analysis (will estimate diversity indices, create rarefaction curve, PCoA plot and more)

3. Ways you can incorporate eDNA in the classroom

Field sampling and water filtration

- Students can collect water along with environmental data (temperature, turbidity etc)
- Water can be filtered on site using syringe filters, or in the lab with a vacuum pump
- Filters can be frozen for later DNA extraction
- If extraction and PCR equipment is available, students can do a singlespecies PCR to detect presence/absence
- Otherwise collaboration with a lab is needed...OR...

Jonah Ventures

https://store.jonahventures.com/products/aquatic-edna-kit-single

Aquatic eDNA kit (fish + phytoplankton)

\$89.00

ADD TO CART Buy with G Pay More payment options

Using the JonahWater aquatic environmental DNA kit, you can reconstruct aquatic assemblages in your local water body! By filtering water and then sequencing the DNA on the filters, we can tell you the species of fish and algae that live in your neighborhood.

Simply collect water in the syringe, push it through the filter, and mail the filter to us in the supplied barcoded sample cup and return shipping envelope. We do all the DNA extraction and analysis and send you back the results!

Included with these kits is access to a convenient JonahDNA phone app, which can be used to enter meta-data. Our convenient

Low-tech "PCR" exercise (no computers needed!)

- Students each get a sequence of a marine organism printed on paper and have to match against paper primers (and complete the complementary sequence) to simulate PCR
- They then match their sequence to barcode sequence on reference cards to determine what species it is
- They complete a worksheet interpreting the class results

Data analysis

- Advanced students can use the resulting data (taxonomic table) to perform statistics in either Excel or R
- Quantify diversity metrics (Shannon and Simpson indices) (Excel or R)
- Create stacked barplots to show proportions of taxa in each sample (Excel or R)
- Principle components analysis to show community composition (Vegan package in R)

4. Hands-on activity: identifying species from DNA sequences using a reference database!

>*16S-0000002 | depth=42 | freq=2.31

TTCAACCTTGCGGTCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCTGCGGCACTAAACCCCGGAAAGGGTCTAACACCTAGCACTCATCGTT TACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAAGCCAGAGAGCCGCTTTCGCCACCG GTGTTCCTCCATATATCTACGCATTTCACCGCTACACATGGAATTCCACTCTCCCCCTCTTGCACTCAAGTTAAACAGTTTCCAAAGCGTACTATG GTTAAGCCACAGCCTTTAACTTCAGACTTATCT

>*16S-0000019 | depth=12 | freq=0.66

5. Wrap-up

- Questions?
- Discussion: how might you introduce eDNA in the classroom?

